

Biips: A software for Bayesian inference with interacting particle systems Probabilistic Programming Reading Group

<u>Adrien Todeschini</u>[†], François Caron^{*}, Pierrick Legrand[†], Pierre Del Moral[‡] and Marc Fuentes[†]

[†]Inria Bordeaux, ^{*}Univ. Oxford, [‡]UNSW Sydney

Oxford, October 2014

Outline

Context

Graphical models and BUGS language

SMC

Matbiips

Particle MCMC

Summary

Context

Graphical models and BUGS language

SMC

Matbiips

Particle MCMC

Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- Sample from a posterior distribution $p(X|Y) = \frac{p(X,Y)}{p(Y)}$
- High dimensional, arbitrary complexity
- Simulation methods: MCMC, SMC...

Motivation

- Last 20 years: success of SMC in many applications
- ▶ No general and easy-to-use software for SMC

Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- Sample from a posterior distribution $p(X|Y) = \frac{p(X,Y)}{p(Y)}$
- High dimensional, arbitrary complexity
- Simulation methods: MCMC, SMC...

Motivation

- Last 20 years: success of SMC in many applications
- No general and easy-to-use software for SMC

Context

Biips = Bayesian inference with interacting particle systems

Objectives

- BUGS language compatible
- Extensibility: user-defined functions/samplers
- Black-box SMC inference engine
- Interfaces with popular software: Matlab/Octave, R
- Post-processing

Summary

Context

Graphical models and BUGS language

SMC

Matbiips

Particle MCMC

The graph displays a factorization of the joint distribution:

 $p(x_{1:3},y_{1:2})$

Directed acyclic graph

Directed acyclic graph

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3},y_{1:2}) = p(x_1) \; p(x_2|x_1) \; p(y_1|x_2) \ p(x_3|x_1,x_2) \; p(y_2|x_2,x_3)$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3},y_{1:2}) = p(x_1) \; p(x_2|x_1) \; p(y_1|x_2) \ p(x_3|x_1,x_2) \; p(y_2|x_2,x_3)$$

- ► S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

- ► S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha</pre>
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha
    alpha ~ dnorm(0, 1E-6)
    beta ~ dnorm(0, 1E-6)
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha
    alpha ~ dnorm(0, 1E-6)
    beta ~ dnorm(0, 1E-6)
}</pre>
```

```
Goal:
Estimate p(\alpha, \beta, \tau | X, Y)
```


1E-6

0

X

 βX

BUGS software using MCMC

BUGS = **B**ayesian inference **U**sing **G**ibbs **S**ampling

- WinBUGS, OpenBUGS, JAGS [Plummer, 2012]
- Expert system automatically derives MCMC methods (Gibbs, Slice, Metropolis, ...) in a 'black-box' fashion
- Very popular among practitioners, applying MCMC methods to a wide range of applications [Lunn et al., 2012]

Summary

Context

Graphical models and BUGS language

SMC

Matbiips

Particle MCMC

A. Todeschini

Topological sort (with priority to measurement nodes): $(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)$

Rearrangement of the directed acyclic graph:

Topological sort (with priority to measurement nodes): $\underbrace{(X_1, \underbrace{Y_1, Y_3}_{\mathbf{X'_1}}, \underbrace{X_3, X_2}_{\mathbf{X'_2}}, \underbrace{Y_4, Y_2}_{\mathbf{Y'_2}})}_{\mathbf{X'_1}}$

Topological sort (with priority to measurement nodes): $(\underbrace{X_1}_{\mathbf{X}_1}, \underbrace{Y_1}_{\mathbf{Y}_1}, \underbrace{X_3}_{\mathbf{X}_2}, \underbrace{X_2}_{\mathbf{X}_2}, \underbrace{Y_4}_{\mathbf{Y}_2}, \underbrace{Y_2}_{\mathbf{Y}_2})$ Rearrangement of the directed acyclic graph:

The statistical model decomposes as $p(x'_1, x'_2, y'_1, y'_2) =$ $p(x'_1)p(y'_1|x'_1)$ $p(x'_2|x'_1, y'_1)p(y'_2|x'_2)$

SMC algorithm

More generally, assume that we have sorted variables $(X_1, Y_1, \ldots, X_n, Y_n)$. The statistical model decomposes as

$$p(x_{1:n},y_{1:n})=p(x_1)p(y_1|x_1)\prod_{t=2}^n p(x_t|\mathsf{pa}(x_t))p(y_t|\mathsf{pa}(y_t))$$

where pa(x) denotes the set of parents of variable x.

SMC algorithm

- A.k.a. interacting MCMC, particle filtering, sequential Monte Carlo methods (SMC) ...
- Sequentially sample from conditional distributions of increasing dimension

 $\pi_1(x_1|y_1) o \pi_2(x_{1:2}|y_{1:2}) o ... o \pi_n(x_{1:n}|y_{1:n})$

where, for t = 1, ..., n

$$\pi_t(x_{1:t}|y_{1:t}) = rac{p(x_{1:t},y_{1:t})}{p(y_{1:t})}$$

Two stochastic mechanisms:

- Mutation/Exploration
- Selection

[Doucet et al., 2001, Del Moral, 2004, Doucet and Johansen, 2010] $$^{13/41}$$

A. Todeschini

SMC Algorithm

Standard SMC algorithm

For $t = 1, \ldots, n$

▶ For i = 1,..., N
▶ Sample: X⁽ⁱ⁾_{t,t} ~ q_t and let X⁽ⁱ⁾_{t,1:t} = (X⁽ⁱ⁾_{t-1,1:t-1}, X⁽ⁱ⁾_{t,t})
▶ Weight: w⁽ⁱ⁾_t = π(y_t|pa(y_t))π(x⁽ⁱ⁾_{t,t}|pa(x⁽ⁱ⁾_{t,t})))/q_t(x⁽ⁱ⁾_{t,t})
▶ Normalize: W⁽ⁱ⁾_t = w⁽ⁱ⁾<sub>∑_{j=1}^N w^(j)_t
▶ Resample: {X⁽ⁱ⁾_{t,1:t}, W⁽ⁱ⁾_t} i=1,...,N → {X⁽ⁱ⁾_{t,1:t}, 1/N} i=1,...,N
</sub>

Outputs

- Weighted particles $(W_t^{(i)}, X_{t,1:t}^{(i)})_{i=1,...,N}$ for $t=1,\ldots,n$
- Estimate of the marginal likelihood $\widehat{Z} = \prod_{t=1}^n \left(rac{1}{N} \sum_{i=1}^N w_t^{(i)}
 ight)$

SMC algorithm

Marginal distributions

$$\pi_1(x_1|y_1) \ o \ \pi_2(x_{1:2}|y_{1:2}) \ o ... o \ \pi_n(x_{1:n}|y_{1:n})$$

Limitations and diagnosis of SMC algorithms

For a given $t \leq n$, for each unique value $X_{n,t}^{\prime(k)}$, $k = 1, \ldots, K_{n,t}$, let $W_{n,t}^{\prime(k)} = \sum_{i|X_t^{(i)}=X_t^{\prime(k)}} W_n^{(i)}$ be its associated total weight. A measure of the quality of the approximation of the posterior distribution $p(x_{t:n}|y_{1:n})$ is given by the smoothing effective sample size (SESS):

$$SESS_{t} = \frac{1}{\sum_{k=1}^{K_{n,t}} \left(W_{n,t}^{\prime(k)} \right)^{2}}$$
(1)

with $1 \leq \text{SESS}_t \leq N$.

A. Todeschini

Summary

Context

Graphical models and BUGS language

SMC

Matbiips

Particle MCMC

Technical implementation

- Interfaces: Matlab/Octave, R
- Multi-platform: Windows, Linux, Mac OSX
- Free and open source (GPL)

Switching Stochastic Volatility (SSV)

Let Y_t be the response variable and X_t the unobserved log-volatility of Y_t . For $t=1,\ldots,n$

$$egin{aligned} X_t | (X_{t-1} = x_{t-1}, C_t = c_t) &\sim \mathcal{N}(lpha_{c_t} + \phi x_{t-1}, \sigma^2) \ Y_t | X_t = x_t &\sim \mathcal{N}(0, \exp(x_t)) \end{aligned}$$

The regime variables C_t follow a two-state Markov process with transition probabilities

 $p_{ij} = \Pr(C_t = j | C_{t-1} = i), \text{ for } i, j = 1, 2$

SSV model in BUGS language

switch_stoch_volatility.bug

```
model
{
    c[1] ~ dcat(pi[c0,])
    mu[1] <- alpha[1]*(c[1]==1) + alpha[2]*(c[1]==2) + phi*x0
    x[1] ~ dnorm(mu[1], 1/sigma^2)
    y[1] ~ dnorm(0, exp(-x[1]))
    for (t in 2:t_max)
    {
        c[t] ~ dcat(ifelse(c[t-1]==1, pi[1,], pi[2,]))
        mu[t] <- alpha[1]*(c[t]==1) + alpha[2]*(c[t]==2) + phi*x[t-1]
        x[t] ~ dnorm(mu[t], 1/sigma^2)
        y[t] ~ dnorm(0, exp(-x[t]))
    }
}</pre>
```

Model compilation

```
Matbiips

sigma = .4; alpha = [-2.5; -1]; phi = .5; c0 = 1; x0 = 0; t_max =

200;

pi = [.9, .1; .1, .9];

data = struct('t_max', t_max, 'sigma', sigma,...

'alpha', alpha, 'phi', phi, 'pi', pi, 'c0', c0, 'x0', x0);

model_file = 'switch_stoch_volatility.bug';

model = biips_model(model_file, data, 'sample_data', true);

data = model.data:
```

SMC samples

Matbiips

```
n_part = 5000;
variables = {'x'};
out_smc = biips_smc_samples(model, variables, n_part);
diag_smc = biips_diagnosis(out_smc);
```


Summary statistics

summ = biips_summary(out_smc, 'probs', [.025, .975]); x_f_mean = summ.x.f.mean; x_f_quant = summ.x.f.quant; x_s_mean = summ.x.s.mean; x_s_quant = summ.x.s.quant;

Matbiips

Kernel density estimates

Sensitivity analysis

```
Matbiips
```


A. Todeschini

Summary

Context

Graphical models and BUGS language

SMC

Matbiips

Particle MCMC

Recent algorithms that use SMC algorithms within a MCMC algorithm

- Particle Independant Metropolis-Hastings (PIMH)
- Particle Marginal Metropolis-Hastings (PMMH)

Static parameter estimation

Due to the successive resamplings, SMC estimations of $p(\theta|y_{1:n})$ might be poor.

The PMMH splits the variables in the graphical model into two sets:

- \blacktriangleright a set of variables X that will be sampled using a SMC algorithm
- a set $\theta = (\theta_1, \dots, \theta_p)$ sampled with a MH proposal

PMMH

Standard PMMH algorithm Set $\widehat{Z}(0) = 0$ and initialize $\theta(0)$ For $k = 1, \dots, n_{\text{iter}}$,

- Sample $\theta^{\star} \sim \nu$
- ▶ Run a SMC to approximate $p(x_{1:n}|y_{1:n}, \theta^{\star})$ with output $(X_{1:n}^{\star(i)}, W_n^{\star(i)})_{i=1,...,N}$ and \widehat{Z}^{\star}
- With probability

$$\min\left(1,rac{\widehat{Z}^{\star}}{\widehat{Z}(k-1)}
ight)$$

set $X_{1:n}(k) = X_{1:n}^{\star(\ell)}$, $\theta(k) = \theta^{\star}$ and $\widehat{Z}(k-1) = \widehat{Z}^{\star}$, where $\ell \sim \operatorname{Discrete}(W_n^{\star(1)}, \dots, W_n^{\star(N)})$

otherwise, keep previous iteration values

Outputs

• MCMC samples $(X_{1:n}(k), \theta(k))_{k=1,...,n_{\mathsf{iter}}}$

Static parameter estimation in the SSV model

We consider the following prior on the parameters lpha, π , ϕ and au :

 $egin{aligned} lpha_1 &= \gamma_1 \ lpha_2 &= \gamma_1 + \gamma_2 \ \gamma_1 &\sim \mathcal{N}(0, 100) \ \gamma_2 &\sim \mathcal{TN}_{(0, +\infty)}(0, 100) \end{aligned}$

 $\begin{aligned} \frac{1}{\sigma^2} &\sim \text{Gamma}(2.001, 1) \\ \phi &\sim \mathcal{TN}_{(-1,1)}(0, 100) \\ \pi_{11} &\sim \text{Beta}(10, .5) \\ \pi_{22} &\sim \text{Beta}(10, .5) \end{aligned}$

SSV model with unknown parameters in BUGS language

switch_stoch_volatility_param.bug

```
model
ł
  gamma[1] ~ dnorm(0, 1/100)
  gamma[2] ~ dnorm(0, 1/100) T(0,)
  alpha[1] <- gamma[1]
  alpha[2] <- gamma[1] + gamma[2]</pre>
  phi ~ dnorm(0, 1/100) T(-1,1)
  tau ~ dgamma(2.001, 1)
  sigma <- 1/sqrt(tau)</pre>
  pi[1,1] ~ dbeta(10, .5)
  pi[1,2] <- 1.00 - pi[1,1]
  pi[2,2] ~ dbeta(10, .5)
  pi[2,1] <- 1.00 - pi[2,2]
  . . .
```

```
Matbiips
```

```
model_file = 'switch_stoch_volatility_param.bug';
model = biips_model(model_file, data, 'sample_data', sample_data);
data = model.data;
```

PMMH samples

```
Run a PMMH sampler to approximate p(\alpha_1, \alpha_2, \sigma, \pi_{11}, \pi_{22}, \phi, X_{1,T}, C_{1:T} | Y_{1:T}).
```

```
Matbiips
```

```
n burn = 2000;
n iter = 40000;
thin = 10:
n part = 50;
param_names = {'gamma[1,1]', 'gamma[2,1]', 'phi', 'tau', 'pi[1,1]',
    'pi[2,2]'};
latent_names = {'x', 'alpha[1,1]', 'alpha[2,1]', 'sigma'};
inits = \{-1, 1, .5, 5, .8, .8\}:
obj_pmmh = biips_pmmh_init(model, param_names, 'inits', inits, '
    latent names'. latent names):
obj_pmmh = biips_pmmh_update(obj_pmmh, n_burn, n_part);
[obj_pmmh, out_pmmh, log_marg_like_pen, log_marg_like] = ...
    biips pmmh samples (obj pmmh, n iter, n part, 'thin', thin);
```

Posterior samples

Other features of Biips

- Backward smoothing algorithm
- Particle Independent Metropolis-Hastings algorithm
- Automatic choice of the proposal distribution including
 Optimal/Conditional samplers: Gaussian-Gaussian, Beta-Bernoulli, Finite discrete
- ► Easy BUGS language extensions with user-defined Matlab/R functions

Related software

using MCMC

- WinBUGS, OpenBUGS [Lunn et al., 2000, Lunn et al., 2012], JAGS [Plummer, 2003]
- Stan [Stan Development Team, 2013]

using SMC

- SMCTC [Johansen, 2009]
- LibBi [Murray, 2013]

using both

▶ Venture [Mansinghka et al., 2014], Anglican [Wood et al., 2014]

Conclusion

- BUGS language compatible
- Extensibility: user-defined functions/samplers
- Black-box SMC inference engine
- ► Interfaces with popular software: Matlab/Octave, R
- Post-processing

Bibliography I

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte carlo methods. Journal of the Royal Statistical Society B, 72:269–342.

Carvalho, C. M. and Lopes, H. F. (2007). Simulation-based sequential analysis of Markov switching stochastic volatility models. *Computational Statistics & Data Analysis*, 51(9):4526–4542.

Del Moral, P. (2004).

Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Application. Springer.

Doucet, A., de Freitas, N., and Gordon, N., editors (2001). Sequential Monte Carlo Methods in Practice. Springer-Verlag.

Doucet, A. and Johansen, A. (2010). A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D. and Rozovsky, B., editors, *Oxford Handbook of Nonlinear Filtering*. Oxford University Press.

Johansen, A. (2009). SMCTC: Sequential monte carlo in C++. Journal of Statistical Software, 30:1–41.

Bibliography II

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2012). *The BUGS Book: A Practical Introduction to Bayesian Analysis.* CRC Press/ Chapman and Hall.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling framework: Concepts, structure and extensibility. *Statistics and Computing*, 10:325–337.

Mansinghka, V. K., Selsam, D., and Perov, Y. N. (2014). **Venture**: A higher-order probabilistic programming platform with programmable inference. Technical report, arXiv:1404.0099.

Murray, L. (2013).

Bayesian state-space modelling on high-performance hardware using LibBi. Technical report, CSIRO. Arxiv:1306.3277.

Plummer, M. (2003).

JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing.

Plummer, M. (2012).

JAGS Version 3.3.0 user manual.
Bibliography III

Stan Development Team (2013).

Stan: A C++ library for probability and sampling, version 2.1.

Wood, F., van de Meent, J. W., and Mansinghka, V. (2014). A new approach to probabilistic programming inference. In Proceedings of the 17th International conference on Artificial Intelligence and Statistics.

THANK YOU

http://alea.bordeaux.inria.fr/biips