

Biips software: Bayesian inference with interacting particle systems BAYES 2015

<u>Adrien Todeschini</u>[†], François Caron^{*}, Pierrick Legrand[†], Pierre Del Moral[‡] and Marc Fuentes[†]

[†]Inria Bordeaux, ^{*}Univ. Oxford, [‡]UNSW Sydney

Basel, May 2015

Outline

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- ▶ Sample from a posterior distribution $p(X|Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{Z}$
- High dimensional, arbitrary complexity
- Simulation methods: MCMC, SMC...

Motivation

- Last 20 years: success of SMC in many applications
- ▶ No general and easy-to-use software for SMC

Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- Sample from a posterior distribution $p(X|Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{Z}$
- High dimensional, arbitrary complexity
- Simulation methods: MCMC, SMC...

Motivation

- Last 20 years: success of SMC in many applications
- No general and easy-to-use software for SMC

Context

Biips = Bayesian inference with interacting particle systems

Features

- BUGS language compatible
- Extensibility: custom functions/samplers
- Black-box SMC inference engine
- Interfaces with popular software: Matlab/Octave, R
- Post-processing tools

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2})$

Directed acyclic graph

Directed acyclic graph

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

 $p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3},y_{1:2}) = p(x_1) \; p(x_2|x_1) \; p(y_1|x_2) \ p(x_3|x_1,x_2) \; p(y_2|x_2,x_3)$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3},y_{1:2}) = p(x_1) \; p(x_2|x_1) \; p(y_1|x_2) \ p(x_3|x_1,x_2) \; p(y_2|x_2,x_3)$$

- ► S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

- ► S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha</pre>
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha
    alpha ~ dnorm(0, 1E-6)
    beta ~ dnorm(0, 1E-6)
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha
    alpha ~ dnorm(0, 1E-6)
    beta ~ dnorm(0, 1E-6)
}</pre>
```

```
Goal:
Estimate p(\alpha, \beta, \tau | X, Y)
```


1E-6

0

X

 βX

BUGS software using MCMC

BUGS = **B**ayesian inference **U**sing **G**ibbs **S**ampling

- WinBUGS, OpenBUGS, JAGS [Plummer, 2012]
- Expert system automatically derives MCMC methods (Gibbs, Slice, Metropolis, ...) in a 'black-box' fashion
- Very popular among practitioners, applying MCMC methods to a wide range of applications [Lunn et al., 2012]

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

A. Todeschini

Topological sort (with priority to measurement nodes): $(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)$

Rearrangement of the directed acyclic graph:

Topological sort (with priority to measurement nodes): $\underbrace{(X_1, \underbrace{Y_1, Y_3}_{\mathbf{X'_1}}, \underbrace{X_3, X_2}_{\mathbf{X'_2}}, \underbrace{Y_4, Y_2}_{\mathbf{Y'_2}})}_{\mathbf{X'_1}}$

Topological sort (with priority to measurement nodes): $(\underbrace{X_1}_{\mathbf{X}_1}, \underbrace{Y_1}_{\mathbf{Y}_1}, \underbrace{X_3}_{\mathbf{X}_2}, \underbrace{X_2}_{\mathbf{X}_2}, \underbrace{Y_4}_{\mathbf{Y}_2}, \underbrace{Y_2}_{\mathbf{Y}_2})$ Rearrangement of the directed acyclic graph:

The statistical model decomposes as $p(x'_1, x'_2, y'_1, y'_2) =$ $p(x'_1)p(y'_1|x'_1)$ $p(x'_2|x'_1, y'_1)p(y'_2|x'_2)$

SMC algorithm

More generally, assume that we have sorted variables $(X_1, Y_1, \ldots, X_n, Y_n)$. The statistical model decomposes as

$$p(x_{1:n},y_{1:n})=p(x_1)p(y_1|x_1)\prod_{t=2}^n p(x_t|\mathsf{pa}(x_t))p(y_t|\mathsf{pa}(y_t))$$

where pa(x) denotes the set of parents of variable x.

SMC algorithm

- A.k.a. interacting MCMC, particle filtering, sequential Monte Carlo methods (SMC) ...
- Sequentially sample from conditional distributions of increasing dimension

$$\pi_1(x_1|y_1) o \pi_2(x_{1:2}|y_{1:2}) o ... o \pi_n(x_{1:n}|y_{1:n})$$
 where, for $t=1,...,n$

$$egin{aligned} \pi_t(x_{1:t}|y_{1:t}) &= rac{p(x_{1:t},y_{1:t})}{p(y_{1:t})} \ &= \pi_{t-1}(x_{1:t-1}|y_{1:t-1})rac{p(x_t|\mathsf{pa}(x_t))p(y_t|\mathsf{pa}(y_t))}{p(y_t|y_{1:t-1})} \end{aligned}$$

Two stochastic mechanisms:

- Mutation/Exploration
- Selection

[Doucet et al., 2001, Del Moral, 2004, Doucet and Johansen, 2010] $$^{13/41}$$

A. Todeschini

Standard SMC Algorithm

For
$$t = 1, ..., n$$

• For $i = 1, ..., N$
• Sample: $X_{t,t}^{(i)} \sim q_t$ and let $X_{t,1:t}^{(i)} = (\widetilde{X}_{t-1,1:t-1}^{(i)}, X_{t,t}^{(i)})$
• Weight: $w_t^{(i)} = \frac{\pi(y_t|pa(y_t))\pi(x_{t,t}^{(i)}|pa(x_{t,t}^{(i)}))}{q_t(x_{t,t}^{(i)})}$
• Normalize: $W_t^{(i)} = \frac{w_t^{(i)}}{\sum_{j=1}^N w_t^{(j)}}$
• Resample: $\{X_{t,1:t}^{(i)}, W_t^{(i)}\}_{i=1,...,N} \rightarrow \{\widetilde{X}_{t,1:t}^{(i)}, \frac{1}{N}\}_{i=1,...,N}$

Outputs

- Weighted particles $(W_t^{(i)}, X_{t,1:t}^{(i)})_{i=1,...,N}$ for t = 1, ..., n
- lacksim Estimate of the marginal likelihood $\widehat{Z} = \prod_{t=1}^n \left(rac{1}{N}\sum_{i=1}^N w_t^{(i)}
 ight)$

SMC algorithm

Marginal distributions

 $\begin{array}{rcl} \pi_1(x_1|y_1) & \to & \pi_2(x_{1:2}|y_{1:2}) & \to \dots \to & \pi_n(x_{1:n}|y_{1:n}) \\ \\ \text{Filtering:} & & \pi_1(x_1|y_1), & & \pi_2(x_2|y_{1:2}), & \dots, & \pi_n(x_n|y_{1:n}) \\ \\ \text{Smoothing:} & & \pi_1(x_1|y_{1:n}), & & \pi_2(x_2|y_{1:n}), & \dots, & \pi_n(x_n|y_{1:n}) \end{array}$

Example

Hidden Markov model/State space model

$$egin{array}{rcl} x_0 &\sim & \mathcal{N}(0,1) \ x_t | x_{t-1} &\sim & \mathcal{N}(x_{t-1},1), \ t=1,...,10 \ y_t | x_t &\sim & \mathcal{N}(x_t,1), \ t=1,...,10 \end{array}$$

- Linear Gaussian model
- Goal: estimate $p(x_{1:t}|y_{1:t})$
- Analytic solution given by Kalman equations

Limitations and diagnosis of SMC algorithms

For a given $t \leq n$, for each unique value $X_{n,t}^{\prime(k)}$, $k = 1, \ldots, K_{n,t}$, let $W_{n,t}^{\prime(k)} = \sum_{i|X_t^{(i)}=X_t^{\prime(k)}} W_n^{(i)}$ be its associated total weight. A measure of the quality of the approximation of the posterior distribution $p(x_{t:n}|y_{1:n})$ is given by the smoothing effective sample size (SESS):

$$SESS_{t} = \frac{1}{\sum_{k=1}^{K_{n,t}} \left(W_{n,t}^{\prime(k)} \right)^{2}}$$
(1)

with $1 \leq \text{SESS}_t \leq N$.

A. Todeschini

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Technical implementation

- Interfaces: Matlab/Octave, R
- Multi-platform: Windows, Linux, Mac OSX
- Free and open source (GPL)

Example: Stochastic kinetic Lotka-Volterra model

- Evolution of two species $X_1(t)$ (prey) and $X_2(t)$ (predator) at time t
- Continuous-time Markov jump process described by three reaction equations:

$X_1 \\ X_1 + X_2 \\ X_2$	$\xrightarrow{c_1}\\\xrightarrow{c_2}\\\xrightarrow{c_3}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	prey reproduction, predator reproduction, predator death
where $c_1 = 0.5, \ c_2 = 0.0025$ and $c_3 = 0.3$.			
$\begin{aligned} &\Pr(X_1(t+dt) = x_1(t) + 1, X_2(t+dt) = x_2(t) x_1(t), x_2(t)) \\ &= c_1 x_1(t) dt + o(dt) \\ &\Pr(X_1(t+dt) = x_1(t) - 1, X_2(t+dt) = x_2(t) + 1 x_1(t), x_2(t))) \\ &= c_2 x_1(t) x_2(t) dt + o(dt) \\ &\Pr(X_1(t+dt) = x_1(t), X_2(t+dt) = x_2(t) - 1 x_1(t), x_2(t))) \\ &= c_3 x_2(t) dt + o(dt) \end{aligned}$			

[Boys et al., 2008]

Gillespie algorithm

R function to forward simulate from the LV model with Gillespie algorithm

```
lotka_volterra_gillespie <- function(x, c1, c2, c3, dt) {</pre>
  z <- matrix(c(1, -1, 0, 0, 1, -1), nrow=2, byrow=TRUE)
  t <- 0
  while (TRUE) {
    rate <- c(c1*x[1], c2*x[1]*x[2], c3*x[2])
    sum_rate <- sum(rate);</pre>
    # Sample the next event from an exponential distribution
    t <- t - log(runif(1))/sum_rate</pre>
    if (t>dt)
     break
    # Sample the type of event
    ind <- which((sum_rate*runif(1)) <= cumsum(rate))[1]</pre>
    x < -x + z[,ind]
  }
  return(x)
}
```

[Gillespie, 1977, Golightly and Gillespie, 2013]

Add a custom sampler to the BUGS language

Example: Stochastic kinetic Lotka-Volterra model

We observe at some time t = 1, 2, ..., t_{max} the number of preys with some additive noise

$$Y(t) = X_1(t) + \epsilon(t), \;\; \epsilon(t) \sim \mathcal{N}(0,\sigma^2)$$

• Objective: approximate $\Pr(X_1(t), X_2(t) | Y(1), \dots, Y(t_{\max}))$ at $t = 1, \dots, t_{\max}$.

Example: Stochastic kinetic Lotka-Volterra model

stoch_kinetic_gill.bug

```
model
{
    x[,1] ~ LV(x_init, c[1], c[2], c[3], 1)
    y[1] ~ dnorm(x[1,1], 1/sigma^2)
    for (t in 2:t_max)
    {
        x[,t] ~ LV(x[,t-1], c[1], c[2], c[3], 1)
        y[t] ~ dnorm(x[1,t], 1/sigma^2)
    }
}
```


Model compilation

Rbiips

Ground truth and data

SMC samples

(a) Estimates

(b) Smoothing effective sample size

Kernel density estimates

kde_smc <- biips_density(out_smc)</pre>

Rbiips

Predator at t=15

Filtering density Smoothing density True value

Probability mass estimates

tab_smc <- biips_table(out_smc)</pre>

Rbiips

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Recent algorithms that use SMC algorithms within a MCMC algorithm

- Particle Independant Metropolis-Hastings (PIMH)
- Particle Marginal Metropolis-Hastings (PMMH)

Static parameter estimation

Due to the successive resamplings, SMC estimations of $p(\theta|y_{1:n})$ might be poor.

The PMMH splits the variables in the graphical model into two sets:

- \blacktriangleright a set of variables X that will be sampled using a SMC algorithm
- a set $\theta = (\theta_1, \dots, \theta_p)$ sampled with a MH proposal

Standard PMMH algorithm

- Set $\widehat{Z}(0) = 0$ and initialize $\theta(0)$
- For $k = 1, \ldots, n_{\text{iter}}$,
 - Sample $\theta^{\star} \sim \nu(.|\theta^{(k-1)})$
 - $\begin{array}{l} \blacktriangleright \mbox{ Run a SMC to approximate } p(x_{1:n}|y_{1:n},\theta^{\star}) \mbox{ with output } \\ (X_{1:n}^{\star(i)}, W_n^{\star(i)})_{i=1,\ldots,N} \mbox{ and } \widehat{Z}^{\star} \approx p(y_{1:n}|\theta^{\star}) \end{array} \end{array}$
 - With probability

$$\min\left(1,\frac{\nu(\theta^\star|\theta(k-1))p(\theta^\star)\widehat{Z}^\star}{\nu(\theta(k-1)|\theta^\star)p(\theta(k-1))\widehat{Z}(k-1)}\right)$$

set $X_{1:n}(k) = X_{1:n}^{\star(\ell)}$, $\theta(k) = \theta^{\star}$ and $\widehat{Z}(k-1) = \widehat{Z}^{\star}$, where $\ell \sim \operatorname{Discrete}(W_n^{\star(1)}, \dots, W_n^{\star(N)})$

otherwise, keep previous iteration values

Outputs

• MCMC samples $(X_{1:n}(k), \theta(k))_{k=1,...,n_{\text{iter}}}$

Example: Stochastic kinetic Lotka-Volterra model

stoch_kinetic_gill.bug

```
model
{
    logc[1] ~ dunif(-7,2)
    logc[2] ~ dunif(-7,2)
    logc[3] ~ dunif(-7,2)
    c[1] <- exp(logc[1])
    c[2] <- exp(logc[2])
    c[3] <- exp(logc[3])
    ...
}</pre>
```

Run a PMMH algorithm

```
Rbiips
# create a pmmh object
obj_pmmh = biips_pmmh_init(model,
                           param_names = c('logc[1]',
                                            'logc[2]',
                                            'logc[3]'),
                            inits = list(-1, -5, -1).
                            latent names = 'x')
# adaptation and burn-in iterations
biips_pmmh_update(obj_pmmh, n_iter = 2000, n_part = 100)
# samples
out_pmmh = biips_pmmh_samples(obj_pmmh, n_iter = 20000,
                              n_{part} = 100, thin = 10)
summ_pmmh = biips_summary(out_pmmh, probs = c(.025, .975))
kde_pmmh = biips_density(out_pmmh)
```

Posterior samples

Number of samples

A. Todeschini

Conclusion

- BUGS language compatible
- Extensibility: custom functions/samplers
- Black-box SMC inference engine
- Interfaces with popular software: Matlab/Octave, R
- Post-processing tools
- And more: backward smoothing algorithm, particle independent Metropolis-Hastings algorithm, sensitivity analysis, some optimal/conditional samplers (Gaussian-Gaussian, beta-Bernoulli, finite discrete)

http://alea.bordeaux.inria.fr/biips

What is Biips?

Bilps is a general software for Bayesian inference with interacting particle systems, a.k.a. sequential Monte Carlo (SMC) methods. It aims at popularizing the use of these methods to non-statistician researchers and students, thanks to its automated "black box" inference engine.

It borrows from the QBUGS/QJAGS software, widely used in Bayesian statistics, the statistical modeling with graphical models and the language associated with their descriptions.

Features

- · BUGS language compatible
- · SMC techniques for filtering and smoothing
- · Static parameter estimation using particle MCMC
- · Core developped in C++
- · R, Matlab/Octave interfaces
- Easy language extensions with custom R and Matlab functions
- · Multi-platform: Linux, Windows, Mac
- · Free and open source (GPL)

Bibliography I

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte carlo methods. Journal of the Royal Statistical Society B, 72:269–342.

Boys, R. J., Wilkinson, D. J., and Kirkwood, T. B. L. (2008). Bayesian inference for a discretely observed stochastic kinetic model. *Statistics and Computing*, 18(2):125–135.

Del Moral, P. (2004).

Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Application. Springer.

Doucet, A., de Freitas, N., and Gordon, N., editors (2001). Sequential Monte Carlo Methods in Practice. Springer-Verlag.

Doucet, A. and Johansen, A. (2010). A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D. and Rozovsky, B., editors, *Oxford Handbook of Nonlinear Filtering*. Oxford University Press.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. *The journal of physical chemistry*, 81(25):2340–2361.
Bibliography II

Golightly, A. and Gillespie, C. S. (2013). Simulation of stochastic kinetic models. In *In Silico Systems Biology*, pages 169–187. Springer.

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2012). *The BUGS Book: A Practical Introduction to Bayesian Analysis*. CRC Press/ Chapman and Hall.

Plummer, M. (2012).

JAGS Version 3.3.0 user manual.

Todeschini, A., Caron, F., Fuentes, M., Legrand, P., and Del Moral, P. (2014). Biips: Software for Bayesian inference with interacting particle systems. *arXiv preprint arXiv:1412.3779*.

THANK YOU

http://alea.bordeaux.inria.fr/biips

A. Todeschini